Model-based clustering of multi-tissue gene expression data
نویسندگان
چکیده
منابع مشابه
Model-based clustering and data transformations for gene expression data
MOTIVATION Clustering is a useful exploratory technique for the analysis of gene expression data. Many different heuristic clustering algorithms have been proposed in this context. Clustering algorithms based on probability models offer a principled alternative to heuristic algorithms. In particular, model-based clustering assumes that the data is generated by a finite mixture of underlying pro...
متن کاملHDTD: analyzing multi-tissue gene expression data
MOTIVATION By collecting multiple samples per subject, researchers can characterize intra-subject variation using physiologically relevant measurements such as gene expression profiling. This can yield important insights into fundamental biological questions ranging from cell type identity to tumour development. For each subject, the data measurements can be written as a matrix with the differe...
متن کاملGene-Ontology-based clustering of gene expression data
UNLABELLED The expected correlation between genetic co-regulation and affiliation to a common biological process is not necessarily the case when numerical cluster algorithms are applied to gene expression data. GO-Cluster uses the tree structure of the Gene Ontology database as a framework for numerical clustering, and thus allowing a simple visualization of gene expression data at various lev...
متن کاملClustering Gene Expression Data using a Regulation based Density Clustering
We present a density based method for clustering gene expression data using a two-objective function. The method uses regulation information as well as a suitable dissimilarity measure to cluster genes into regions of higher density separated by sparser regions. The method has been tested on five benchmark microarray datasets and found to perform well in terms of homogeneity and z-score measures.
متن کاملMulti-objective optimization for clustering 3-way gene expression data
The microarray technology allows to monitor the expression level of thousands of genes simultaneously. A typical experiment will for example compare gene expression between multiple biological samples such as tumor biopsies, or a single sample in response to a treatment over time. It is assumed that genes with similar function or sharing regulatory elements will display a common expression prof...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bioinformatics
سال: 2019
ISSN: 1367-4803,1460-2059
DOI: 10.1093/bioinformatics/btz805